Chemistry Times
Recent News |  Archives |  Tags |  About |  Newsletter |  Submit News |  Links |  Subscribe to ChemistryTimes.com RSS Feed Subscribe


More Articles
Rediscovering Venus to find faraway earthsRediscovering Venus to find faraway earths

Archaeologists discover bronze remains of Iron Age chariotArchaeologists discover bronze remains of Iron Age chariot

Researchers resolve the Karakoram glacier anomaly, a cold case of climate scienceResearchers resolve the Karakoram glacier anomaly, a cold case of climate science

Fish tale: New study evaluates antibiotic content in farm-raised fishFish tale: New study evaluates antibiotic content in farm-raised fish

New 3-D display technology promises greater energy efficiencyNew 3-D display technology promises greater energy efficiency

Researchers break nano barrier to engineer the first protein microfiberResearchers break nano barrier to engineer the first protein microfiber

Structure of an iron-transport protein revealedStructure of an iron-transport protein revealed

First step: From human cells to tissue-engineered esophagusFirst step: From human cells to tissue-engineered esophagus

Magnetic mirrors enable new technologies by reflecting light in uncanny waysMagnetic mirrors enable new technologies by reflecting light in uncanny ways

Lift weights, improve your memoryLift weights, improve your memory

Spiders: Survival of the fittest groupSpiders: Survival of the fittest group

Autophagy helps fast track stem cell activationAutophagy helps fast track stem cell activation

Myelin vital for learning new practical skillsMyelin vital for learning new practical skills

More physical activity improved school performanceMore physical activity improved school performance

Engineering new vehicle powertrainsEngineering new vehicle powertrains

Around the world in 400,000 years: The journey of the red foxAround the world in 400,000 years: The journey of the red fox

Active aging is much more than exerciseActive aging is much more than exercise

Study: New device can slow, reverse heart failureStudy: New device can slow, reverse heart failure

Are the world's religions ready for ET?Are the world's religions ready for ET?

Gut bacteria, artificial sweeteners and glucose intoleranceGut bacteria, artificial sweeteners and glucose intolerance

Recreating the stripe patterns found in animals by engineering synthetic gene networksRecreating the stripe patterns found in animals by engineering synthetic gene networks

Laying the groundwork for data-driven scienceLaying the groundwork for data-driven science

Hold on, tiger momHold on, tiger mom

Nature's designs inspire research into new light-based technologiesNature's designs inspire research into new light-based technologies

Missing piece found to help solve concussion puzzleMissing piece found to help solve concussion puzzle

Biologists delay the aging process by 'remote control'Biologists delay the aging process by 'remote control'

Geography matters: Model predicts how local 'shocks' influence U.S. economyGeography matters: Model predicts how local 'shocks' influence U.S. economy

Identified for the first time what kind of explosive has been used after the detonationIdentified for the first time what kind of explosive has been used after the detonation

Copied from nature: Detecting software errors via genetic algorithmsCopied from nature: Detecting software errors via genetic algorithms

Researchers make key step towards turning methane gas into liquid fuel (10/28/2009)

Tags:
fuels, methane, methanol, catalysts

Researchers at the University of Washington and the University of North Carolina at Chapel Hill have taken an important step in converting methane gas to a liquid, potentially making it more useful as a fuel and as a source for making other chemicals.

Methane, the primary component of natural gas, is plentiful and is an attractive fuel and raw material for chemicals because it is more efficient than oil, produces less pollution and could serve as a practical substitute for petroleum-based fuels until renewable fuels are widely useable and available.

However, methane is difficult and costly to transport because it remains a gas at temperatures and pressures typical on the Earth's surface.

Now UNC and UW scientists have moved closer to devising a way to convert methane to methanol or other liquids that can easily be transported, especially from the remote sites where methane is often found. The finding is published in the Oct. 23 issue of the journal Science.

Methane is valued for its high-energy carbon-hydrogen bonds, which consist of a carbon atom bound to four hydrogen atoms. The gas does not react easily with other materials and so it is most often simply burned as fuel. Burning breaks all four hydrogen-carbon bonds and produces carbon dioxide and water, said Karen Goldberg, a UW chemistry professor.

Converting methane into useful chemicals, including readily transported liquids, currently requires high temperatures and a lot of energy. Catalysts that turn methane into other chemicals at lower temperatures have been discovered, but they have proven to be too slow, too inefficient or too expensive for industrial applications, Goldberg said.

Binding methane to a metal catalyst is the first step required to selectively break just one of the carbon-hydrogen bonds in the process of converting the gas to methanol or another liquid. In their paper, the researchers describe the first observation of a metal complex (a compound consisting of a central metal atom connected to surrounding atoms or molecules) that binds methane in solution. This compound serves as a model for other possible methane complexes. In the complex, the methane's carbon-hydrogen bonds remained intact as they bound to a rare metal called rhodium.

The work should spur further advances in developing catalysts to transform methane into methanol or other liquids, Goldberg said, although she noted that actually developing a process and being able to convert the gas into a liquid chemical at reasonable temperatures still is likely some distance in the future.

"The idea is to turn methane into a liquid in which you preserve most of the carbon-hydrogen bonds so that you can still have all that energy," she said. "This gives us a clue as to what the first interaction between methane and metal must look like."

Maurice Brookhart, a UNC chemistry professor, said carbon-hydrogen bonds are very strong and hard to break, but in methane complexes breaking the carbon-hydrogen bond becomes easier.

"The next step is to use knowledge gained from this discovery to formulate other complexes and conditions that will allow us to catalytically replace one hydrogen atom on methane with other atoms and produce liquid chemicals such as methanol," Brookhart said.

Note: This story has been adapted from a news release issued by the University of Washington

Post Comments:

Search
New Articles
New materials yield record efficiency polymer solar cellsNew materials yield record efficiency polymer solar cells

Clearing a path for electrons in polymers: Closing in on the speed limitsClearing a path for electrons in polymers: Closing in on the speed limits

Manipulating complex molecules by handManipulating complex molecules by hand

Improving the taste of alcohol-free beer with aromas from the regular beerImproving the taste of alcohol-free beer with aromas from the regular beer

Better bomb-sniffing technologyBetter bomb-sniffing technology

Chemists gain edge in next-gen energyChemists gain edge in next-gen energy

Putting batteries in a kidsafe coat of armor

Two photons strongly coupled by glass fiberTwo photons strongly coupled by glass fiber

Why We are made of 'star stuff'Why We are made of 'star stuff'

Active, biodegradable packaging for oily productsActive, biodegradable packaging for oily products

Novel 3D printing process enables metal additive manufacturing for consumer marketNovel 3D printing process enables metal additive manufacturing for consumer market

Can plants edge out petroleum as raw material for textiles and plastics?

ORNL thermomagnetic processing method provides path to new materialsORNL thermomagnetic processing method provides path to new materials

'Reverse engineering' materials for more efficient heating and cooling'Reverse engineering' materials for more efficient heating and cooling

Li-ion batteries contain toxic halogens, but environmentally friendly alternatives exist



Archives
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007


Science Friends
Agricultural Science
Astronomy News
Sports Tech
Biology News
Biomimicry Science
Cognitive Research
Tissue Engineering
Cancer Research
Cybernetics Research
Electonics Research
Forensics Report
Fossil News
Genetic Archaeology
Genetics News
Geology News
Microbiology Research
Nanotech News
Parenting News
Physics News


  Archives |  Submit News |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2015 Web Doodle, LLC. All rights reserved.