Chemistry Times
Recent News |  Archives |  Tags |  About |  Newsletter |  Submit News |  Links |  Subscribe to ChemistryTimes.com RSS Feed Subscribe


More Articles
Sequencing and analysis of gibbon genome sheds light on its complex evolutionSequencing and analysis of gibbon genome sheds light on its complex evolution

Tipping the balance of behaviorTipping the balance of behavior

Smallest known galaxy with a supermassive black holeSmallest known galaxy with a supermassive black hole

Think big! Bacteria breach cell division size limitThink big! Bacteria breach cell division size limit

Schizophrenia not a single disease but multiple genetically distinct disordersSchizophrenia not a single disease but multiple genetically distinct disorders

Answer to restoring lost island biodiversity found in fossilsAnswer to restoring lost island biodiversity found in fossils

New RFID technology helps robots find household objectsNew RFID technology helps robots find household objects

Forming better database queries at heart of NSF research projectForming better database queries at heart of NSF research project

Solar energy-driven process could revolutionize oil sands tailings reclamationSolar energy-driven process could revolutionize oil sands tailings reclamation

New cooling system heats up physics researchNew cooling system heats up physics research

In-flight sensor tests a step toward Structural Health Monitoring for safer flightsIn-flight sensor tests a step toward Structural Health Monitoring for safer flights

Hold on, tiger momHold on, tiger mom

2014 Arctic sea ice minimum sixth lowest on record2014 Arctic sea ice minimum sixth lowest on record

Can tapioca replace corn as the main source for starch sweeteners?Can tapioca replace corn as the main source for starch sweeteners?

Antifreeze proteins in Antarctic fish prevent both freezing and meltingAntifreeze proteins in Antarctic fish prevent both freezing and melting

Penn team studies nanocrystals by passing them through tiny poresPenn team studies nanocrystals by passing them through tiny pores

Slimy fish and the origins of brain developmentSlimy fish and the origins of brain development

Nature's designs inspire research into new light-based technologiesNature's designs inspire research into new light-based technologies

When rulers can't understand the ruledWhen rulers can't understand the ruled

Hey1 and Hey2 ensure inner ear 'hair cells' are made at the right time, in the right placeHey1 and Hey2 ensure inner ear 'hair cells' are made at the right time, in the right place

Is a gluten-free diet enough to control the complications of celiac disease?Is a gluten-free diet enough to control the complications of celiac disease?

X-ray imaging paves way for novel solar cell productionX-ray imaging paves way for novel solar cell production

Missing piece found to help solve concussion puzzleMissing piece found to help solve concussion puzzle

Biologists delay the aging process by 'remote control'Biologists delay the aging process by 'remote control'

Program earns kudos for improving grades, retaining studentsProgram earns kudos for improving grades, retaining students

Geography matters: Model predicts how local 'shocks' influence U.S. economyGeography matters: Model predicts how local 'shocks' influence U.S. economy

A healthy lifestyle adds years to lifeA healthy lifestyle adds years to life

Identified for the first time what kind of explosive has been used after the detonationIdentified for the first time what kind of explosive has been used after the detonation

Copied from nature: Detecting software errors via genetic algorithmsCopied from nature: Detecting software errors via genetic algorithms

Pliable proteins keep photosynthesis on the light path (5/12/2009)

Tags:
photosynthesis, microbes
The reactions that convert light to chemical energy happen in a millionth of a millionth of a second, which makes experimental observation extremely challenging.  A premier ultrafast laser spectroscopic detection system established at the Biodesign Institute, with the sponsorship of the National Science Foundation, acts like a high-speed motion picture camera.  It splits the light spectrum into infinitesimally discrete slivers, allowing the group to capture vast numbers of ultrafast frames from the components of these exceedingly rapid reactions.  These frames are then mathematically assembled, allowing the group to make a figurative 'movie' of the energy transfer events of photosynthesis. -  Arizona State University Biodesign Institute
The reactions that convert light to chemical energy happen in a millionth of a millionth of a second, which makes experimental observation extremely challenging. A premier ultrafast laser spectroscopic detection system established at the Biodesign Institute, with the sponsorship of the National Science Foundation, acts like a high-speed motion picture camera. It splits the light spectrum into infinitesimally discrete slivers, allowing the group to capture vast numbers of ultrafast frames from the components of these exceedingly rapid reactions. These frames are then mathematically assembled, allowing the group to make a figurative 'movie' of the energy transfer events of photosynthesis. - Arizona State University Biodesign Institute

Photosynthesis is a remarkable biological process that supports life on earth. Plants and photosynthetic microbes do so by harvesting light to produce their food, and in the process, also provide vital oxygen for animals and people.

Now, a large, international collaboration between Arizona State University, the University of California San Diego and the University of British Columbia, has come up with a surprising twist to photosynthesis by swapping a key metal necessary for turning sunlight into chemical energy.

The team, which includes: ASU scientists Su Lin, Neal Woodbury, Aaron Tufts and James P. Allen; UBC colleagues J. Thomas Beatty, Paul R. Jaschke, Federico I. Rosell and A. Grant Mauk; Mark Paddock, UCSD; Haiyu Wang, Jilin University, China, described their findings in the May 11 early online edition of the Proceedings of the National Academy of Sciences (www.pnas.org_cgi_doi_10.1073_pnas.0812719106).

In the heart of every green leaf are pigments called chlorophyll, which not only give most plants their color, but also along with the yellow and orange carotenoid pigments, are key molecules that harvest light across the spectrum.

In all plant chlorophylls, only one particular metal, magnesium, is held tightly within the molecule's center.

During photosynthesis, plants have two photosystems that work in tandem: photosystem I and photosystem II. To peer at the inner workings of photosynthesis, the team used a hardy, well-studied, photosynthetic bacterium called Rhodobacter sphaeroides. An organism similar to this purple bacterium was likely one of the earliest photosynthetic bacteria to evolve. The purple bacteria possess a simplified system similar to photosystem II.

The center stage of photosynthesis is the reaction center, where light energy is funneled into specialized chlorophyll binding proteins. The research team had previously demonstrated that the movement of the reaction center proteins during photosynthesis facilitates the light-driven movement of electrons between molecules in the reaction center, helping the plant or bacteria to harness light energy efficiently even if conditions aren't optimal. Every time the team introduced disruptions into this electron pathway, the proteins were able to compensate by moving and energetically guiding the electrons through their biological circuit.

"One of our research strategies is to introduce mutations into the bacteria and study how these affect the energy conversion efficiency of the reaction center," said Su Lin, PhD, senior researcher at ASU's Department of Chemistry & Biochemistry and Biodesign Institute, and lead author of the study. "Carefully-designed aberrations provide extensive information about the normal mechanism of energy conversion in reaction centers, just like studying a disease clarifies the parameters of health for the involved biochemical pathways and tissues. From this, we can learn a lot about the most basic mechanisms of photosynthesis."

The reactions that convert light to chemical energy happen in a millionth of a millionth of a second, which makes experimental observation extremely challenging. A premier ultrafast laser spectroscopic detection system that Lin has built, with the sponsorship of the National Science Foundation, acts like a high-speed motion picture camera. It splits the light spectrum into infinitesimally discrete slivers, allowing the group to capture vast numbers of ultrafast frames from the components of these exceedingly rapid reactions. These frames are then mathematically assembled, allowing the group to make a figurative 'movie' of the energy transfer events of photosynthesis.

The current research study began when Paul R. Jaschke, a graduate student with professor J. Thomas Beatty in the Department of Microbiology and Immunology at the University of British Columbia, discovered a mutant that replaced the magnesium metal found in the reaction center with zinc.

"We initially thought this reaction center was non-functional," said Beatty. "We were forced to think in new ways to explain the surprising results, which led to some nice insight."

Lin carefully measured the light absorption spectra for the naturally occurring magnesium reaction center and compared it to the mutant reaction center that was replaced with zinc bacteriochlorophylls. She found that, though the zinc-coordinated reaction center is comprised of six bacteriochlorophylls, changing their structure to a configuration similar to that used in plant photosystem I reaction centers, surprisingly, the data from the reaction kinetics and the energy conversion efficiency were almost identical to the magnesium containing reaction center.

"Amazingly, the reaction center still works with essentially the same physical chemical properties as the normal system," said Neal Woodbury, deputy director of the Biodesign Institute. "This was a real puzzle when Su first did these measurements, but she was able to figure out why."

"The electron transfer driving force can be determined by either the properties of the metal cofactors themselves or through their interaction with the protein," said Lin. "In the case of the zinc reaction center, the driving force is regulated through the coordination of the metal."

"Once again, biology shows its resilience so that changes in one area are compensated by changes in others and the protein's ability to dynamically adjust," said Woodbury.

The results may enable researchers to explore a deeper understanding of the structure, function, and evolution of photosynthesis reaction centers in photosystems I and II. Of particular interest, are studies that focus on the interaction between chlorophylls and protein, which differs in naturally occurring reaction center variants. The team may also conduct future experiments to understand the metal substitution limitations of the reaction center and track the protein movements that may be occurring in the reaction center that helps to optimize photosynthesis.

Their results may have long-term practical applications for the development of next-generation solar cells, which could, through biomimicry of photosynthesis, greatly boost the energy efficiency compared with current technology. The robustness of the natural system may offer some useful lessons for engineers trying to improve on current technologies, and bring the costs of solar panels down to the average consumer.

Woodbury has proposed that there might be a way to increase the flexibility of the system used in organic solar cells by incorporating solvents that move on a variety of time scales that could "tune" the molecules to work in a wider variety of conditions.

Note: This story has been adapted from a news release issued by the Arizona State University

Post Comments:

Search
New Articles
Scientists come closer to the industrial synthesis of a material harder than diamondScientists come closer to the industrial synthesis of a material harder than diamond

Study sheds new light on why batteries go badStudy sheds new light on why batteries go bad

How salt causes buildings to crumble

Ceramics don't have to be brittleCeramics don't have to be brittle

Angling chromium to let oxygen throughAngling chromium to let oxygen through

Two-dimensional electron liquidsTwo-dimensional electron liquids

Co-flowing liquids can stabilize chaotic 'whipping' in microfluidic jetsCo-flowing liquids can stabilize chaotic 'whipping' in microfluidic jets

Researchers part waterResearchers part water

First-ever look inside a working lithium-ion battery

'Pick 'n' Mix' chemistry to grow cultures of bioactive molecules'Pick 'n' Mix' chemistry to grow cultures of bioactive molecules

A metallic alloy that is tough and ductile at cryogenic temperaturesA metallic alloy that is tough and ductile at cryogenic temperatures

Titania-based material holds promise as new insulator for superconductorsTitania-based material holds promise as new insulator for superconductors

Simulations for better transparent oxide layersSimulations for better transparent oxide layers

Polyester clothes stink after exercise; cotton, not so much

Live from inside a battery



Archives
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007


Science Friends
Agricultural Science
Astronomy News
Sports Tech
Biology News
Biomimicry Science
Cognitive Research
Tissue Engineering
Cancer Research
Cybernetics Research
Electonics Research
Forensics Report
Fossil News
Genetic Archaeology
Genetics News
Geology News
Microbiology Research
Nanotech News
Parenting News
Physics News


  Archives |  Submit News |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2015 Web Doodle, LLC. All rights reserved.