Chemistry Times
Recent News |  Archives |  Tags |  About |  Newsletter |  Submit News |  Links |  Subscribe to ChemistryTimes.com RSS Feed Subscribe


More Articles
The internet was delivered to the masses; parallel computing is not far behindThe internet was delivered to the masses; parallel computing is not far behind

Worker bees 'know' when to invest in their reproductive futureWorker bees 'know' when to invest in their reproductive future

The channel that relaxes DNAThe channel that relaxes DNA

A spectacular landscape of star formationA spectacular landscape of star formation

Cool moleculesCool molecules

Tilted acoustic tweezers separate cells gentlyTilted acoustic tweezers separate cells gently

Study: Earth can sustain more terrestrial plant growth than previously thoughtStudy: Earth can sustain more terrestrial plant growth than previously thought

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopyA breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy

Evolutionary history of honeybees revealed by genomicsEvolutionary history of honeybees revealed by genomics

Bombarded by explosive waves of information, scientists review new ways to process and analyze Big DataBombarded by explosive waves of information, scientists review new ways to process and analyze Big Data

Key to speed? Elite sprinters are unlike other athletes -- deliver forceful punch to groundKey to speed? Elite sprinters are unlike other athletes -- deliver forceful punch to ground

Proteins: New class of materials discoveredProteins: New class of materials discovered

Abusive leadership infects entire teamAbusive leadership infects entire team

Hot-spring bacteria reveal ability to use far-red light for photosynthesisHot-spring bacteria reveal ability to use far-red light for photosynthesis

Stem cells reveal how illness-linked genetic variation affects neuronsStem cells reveal how illness-linked genetic variation affects neurons

Study suggests hatha yoga boosts brain function in older adultsStudy suggests hatha yoga boosts brain function in older adults

Program earns kudos for improving grades, retaining studentsProgram earns kudos for improving grades, retaining students

Common household chemicals decrease reproduction in mice, study findsCommon household chemicals decrease reproduction in mice, study finds

Has the puzzle of rapid climate change in the last ice age been solved?Has the puzzle of rapid climate change in the last ice age been solved?

A self-organizing thousand-robot swarmA self-organizing thousand-robot swarm

Crash-testing rivetsCrash-testing rivets

Scientists discover the miracle of how geckos move, cling to ceilingsScientists discover the miracle of how geckos move, cling to ceilings

Geography matters: Model predicts how local 'shocks' influence U.S. economyGeography matters: Model predicts how local 'shocks' influence U.S. economy

Shrinking dinosaurs evolved into flying birdsShrinking dinosaurs evolved into flying birds

A healthy lifestyle adds years to lifeA healthy lifestyle adds years to life

Do probiotics help kids with stomach bugs?Do probiotics help kids with stomach bugs?

Strict diet suspends development, doubles lifespan of wormsStrict diet suspends development, doubles lifespan of worms

Identified for the first time what kind of explosive has been used after the detonationIdentified for the first time what kind of explosive has been used after the detonation

Copied from nature: Detecting software errors via genetic algorithmsCopied from nature: Detecting software errors via genetic algorithms

New fabricated material changes color instantly in response to external magnetic field (6/18/2009)

Tags:
polymers, magnetics, materials
Yadong Yin is an assistant professor of chemistry at University of California - Riverside. -  Yin lab, UC Riverside.
Yadong Yin is an assistant professor of chemistry at University of California - Riverside. - Yin lab, UC Riverside.

A research team led by a chemist at the University of California, Riverside has fabricated microscopic polymer beads that change color instantly and reversibly when external magnetic fields acting upon the microspheres change orientation.

The beads or "magnetochromatic microspheres" have excellent structural stability. They also are highly compatible with various types of dispersion media such as water, alcohol, hexane and even polymer solutions, allowing them to retain magnetically tunable colors in a variety of chemical environments.

"Unlike many conventional approaches, the instantaneous color change occurs with no change in the structure or intrinsic properties of the microspheres themselves," said Yadong Yin, an assistant professor of chemistry who led the study that brought together chemists at UCR and engineers at Seoul National University, South Korea. "What changes instead are the magnetic fields acting externally on the orientation of these microspheres, these photonic crystals. Our work provides a new mechanism for inducing color change in materials. Now, for the first time, stable photonic materials with tunable colors can be fabricated on a large scale."

Applications of the new material include display type units such as rewritable or reusable signage, posters, papers and labels, and other magnetically activated security features. The new material also can be used to make environmentally friendly pigments for paints and cosmetics, as well as ink materials for color printing.

"Within a certain range, it is possible also to tune the color of the material by simply rotating the microspheres," Yin said.

Study results appeared June 15 in the online issue of the Journal of the American Chemical Society.

"The new technology has a great potential for a wide range of photonic applications because the on/off switching of the diffraction color by the rotating photonic sphere is fast, greatly simplifying the pixel structures," said Seoul National University's Sunghoon Kwon, a leading expert in biophotonics and nanoengineering, whose lab collaborated with Yin's lab on the research. "Therefore, the new technology is suitable for very large-scale displays, such as active signage."

In their lab experiments, the researchers embedded arrays of spatially ordered magnetic iron oxide nanostructures within each polymer microsphere, enabling its colors to be switched on and off simply by changing the microsphere's orientation - or more precisely the orientation of the array. Furthermore, the new system has the advantage of producing bistable color states, required for making rewritable displays.

Yin explained that the color observed in the new materials is "structural color" because it is caused by interference effects rather than pigments. Such color effects, as seen in colorful feathers of many birds, butterfly wings and beetle shells, are produced when microstructures in these objects are aligned in periodic arrays.

"Conventional methods to produce tunable structural color rely on changing the periodicity of the array or the refractive index of the materials - changes that are difficult to achieve or involve slow processes," he said. "In our method, the color is tuned by changing the relative orientation of the periodic arrays in the microspheres by conveniently using external fields. The use of magnetic fields as external stimuli has the additional benefits of instant action, contactless control and easy integration into electronic devices already in the market."

Said Luke P. Lee, the Lloyd Distinguished Professor of Bioengineering at UC Berkeley, who was not involved in the research, "This is a smart and effective solution to solve the problems of previous works, which could not tune the photonic crystal structures."

To fabricate the microspheres, the researchers first mixed magnetic iron oxide particles into a resin, which is initially in liquid phase but later turns solid on exposure to ultraviolet curable resin. They then dispersed the resin solution in oil (mineral oil or silicon oil), whereupon the resin transformed into spherical droplets in the oil. Next, the researchers applied an external magnetic field to organize the iron oxide particles into periodically ordered structures. These structures display a reflective color if viewed along the direction of the magnetic field. Finally, the research team exposed the liquid system to ultraviolet radiation to polymerize the resin droplets and make them solid microspheres.

Next in the research, Yin and his colleagues plan to work on the specific applications of the magnetochromatic microspheres. "Rewritable energy saving display units such as papers and posters are our main interests," he said. "We will also try to develop similar new material for chemical and biological sensors."

Rotation of microspheres in a vertically changing external magnetic field. The color is switched between on (blue) and off states. - Yin lab, UC Riverside

Note: This story has been adapted from a news release issued by the University of California - Riverside

Post Comments:

Search
New Articles
Seeing a molecule breathe

Turning waste from rice, parsley and other foods into biodegradable plastic

The power of salt

Bubbling down: Discovery suggests surprising uses for common bubblesBubbling down: Discovery suggests surprising uses for common bubbles

Organic photovoltaic cells of the futureOrganic photovoltaic cells of the future

Researchers block plant hormoneResearchers block plant hormone

Recycling old batteries into solar cells

Scripps Research Institute chemists uncover powerful new click chemistry reactivityScripps Research Institute chemists uncover powerful new click chemistry reactivity

Novel chip-based platform could simplify measurements of single molecules

Engineer turns metal into glass

Copper foam turns carbon dioxide into useful chemicalsCopper foam turns carbon dioxide into useful chemicals

Foam favorable for oil extractionFoam favorable for oil extraction

Therapy for ultraviolet laser beams: Hydrogen-treated fibersTherapy for ultraviolet laser beams: Hydrogen-treated fibers

Researchers prove stability of wonder material silicene

Scientists enhance synthesis of chromium dioxide (100) epitaxial thin film growthScientists enhance synthesis of chromium dioxide (100) epitaxial thin film growth



Archives
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007


Science Friends
Agricultural Science
Astronomy News
Sports Tech
Biology News
Biomimicry Science
Cognitive Research
Tissue Engineering
Cancer Research
Cybernetics Research
Electonics Research
Forensics Report
Fossil News
Genetic Archaeology
Genetics News
Geology News
Microbiology Research
Nanotech News
Parenting News
Physics News


  Archives |  Submit News |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2015 Web Doodle, LLC. All rights reserved.