Chemistry Times
Recent News |  Archives |  Tags |  About |  Newsletter |  Submit News |  Links |  Subscribe to ChemistryTimes.com RSS Feed Subscribe


More Articles
Discovery hints at why stress is more devastating for someDiscovery hints at why stress is more devastating for some

An uphill climb for mountain species?An uphill climb for mountain species?

'Solid' light could compute previously unsolvable problems'Solid' light could compute previously unsolvable problems

Molecular self-assembly controls graphene-edge configurationMolecular self-assembly controls graphene-edge configuration

Team identifies important regulators of immune cell responseTeam identifies important regulators of immune cell response

Researchers develop ultra sensitive biosensor from molybdenite semiconductorResearchers develop ultra sensitive biosensor from molybdenite semiconductor

Childhood mentors have positive impact on career successChildhood mentors have positive impact on career success

Blood-cleansing biospleen device developed for sepsis therapyBlood-cleansing biospleen device developed for sepsis therapy

Asian monsoon much older than previously thoughtAsian monsoon much older than previously thought

Enigmatic Viking fortress discovered in DenmarkEnigmatic Viking fortress discovered in Denmark

The ozone hole has stabilized -- some questions remainThe ozone hole has stabilized -- some questions remain

Evolutionary tools improve prospects for sustainable developmentEvolutionary tools improve prospects for sustainable development

Researchers discover new clues to determining the solar cycleResearchers discover new clues to determining the solar cycle

Missing piece found to help solve concussion puzzleMissing piece found to help solve concussion puzzle

In directing stem cells, study shows context mattersIn directing stem cells, study shows context matters

Computer games give a boost to EnglishComputer games give a boost to English

Pesky insect inspires practical technologyPesky insect inspires practical technology

Mapping the DNA sequence of Ashkenazi JewsMapping the DNA sequence of Ashkenazi Jews

News media losing role as gatekeepers to new 'social mediators' on Twitter, study findsNews media losing role as gatekeepers to new 'social mediators' on Twitter, study finds

An 'anchor' that keeps proteins togetherAn 'anchor' that keeps proteins together

Biologists delay the aging process by 'remote control'Biologists delay the aging process by 'remote control'

Milk prices top concern of Northeastern organic dairy farmersMilk prices top concern of Northeastern organic dairy farmers

Cicada study discovers 2 genomes that function as 1Cicada study discovers 2 genomes that function as 1

Bombarded by explosive waves of information, scientists review new ways to process and analyze Big DataBombarded by explosive waves of information, scientists review new ways to process and analyze Big Data

Program earns kudos for improving grades, retaining studentsProgram earns kudos for improving grades, retaining students

Geography matters: Model predicts how local 'shocks' influence U.S. economyGeography matters: Model predicts how local 'shocks' influence U.S. economy

A healthy lifestyle adds years to lifeA healthy lifestyle adds years to life

Identified for the first time what kind of explosive has been used after the detonationIdentified for the first time what kind of explosive has been used after the detonation

Copied from nature: Detecting software errors via genetic algorithmsCopied from nature: Detecting software errors via genetic algorithms

Faster protein folding achieved through nanosecond pressure jump (6/3/2009)

Tags:
proteins
Martin Gruebele, the James R. Eiszner Professor of Chemistry at the University of Illinois and corresponding author of the paper, says that prodding proteins to fold by suddenly removing high pressure (a technique also known as 'pressure jumping') through electrical bursting makes for a 'kindler, gentler way' of inducing proteins to fold. -  L. Brian Stauffer
Martin Gruebele, the James R. Eiszner Professor of Chemistry at the University of Illinois and corresponding author of the paper, says that prodding proteins to fold by suddenly removing high pressure (a technique also known as 'pressure jumping') through electrical bursting makes for a 'kindler, gentler way' of inducing proteins to fold. - L. Brian Stauffer

A new method to induce protein folding by taking the pressure off of proteins is up to 100 times faster than previous methods, and could help guide more accurate computer simulations for how complex proteins fold, according to research by a team of University of Illinois scientists accepted for publication in the journal Nature Methods and posted on the journal's Web site May 31.

Martin Gruebele, the James R. Eiszner Professor of Chemistry at the U. of I. and corresponding author of the paper, says that prodding proteins to fold by suddenly removing high pressure (a technique also known as "pressure jumping") through electrical bursting makes for a "kindler, gentler way" of inducing proteins to fold.

"When you're increasing the pressure on something, you're squeezing the atoms and making them come closer to one another," Gruebele said, "but you're not necessarily causing the very complicated changes to the microscopic motion that occur when you change the temperature. Pressure is a simpler variable than temperature."

In order to carry out their biomolecular functions, proteins fold from a chaotic, random coil that looks like spaghetti strands floating in boiling water to their native state as an orderly, well-defined but compact structure.

From the point-of-view of the protein, Gruebele said, pressurizing it to about 2,500 atmospheres is much less disruptive than, say, cranking up the temperature by 30 degrees.

"Temperature is a pretty complicated variable in that it involves random motion at a microscopic level," Gruebele said. "When you perturb a protein by raising its temperature, its chains completely unravel, and it might take longer for it to collapse back down to the folded structure."

To induce protein folding, a sample contained in a sapphire cube covered by a small steel diaphragm is pressurized to several thousand atmospheres, causing the biomolecules to unfold. A powerful electrical current then bursts the diaphragm, which releases the pressure and produces a sub-microsecond pressure drop. The proteins re-fold, and are monitored through laser-excited fluorescence.

Gruebele's electrical-bursting method also allowed for a miniaturization of the apparatus, which improved the speed and sample volume of the diaphragm design. That, in turn, allows for a better comparison between how proteins fold in vitro in the lab versus how a computer algorithm would predict how they would fold.

After the pressure is applied, the proteins were able to re-fold or "spring back" to their native-state structures "much more readily than if we had heated them and cooled them down," Gruebele said.

Applying pressure to induce protein folding is not a novel laboratory technique. According to Gruebele, previous methods using electrically controlled valves, piezoelectric constriction and burst diaphragms weren't fast enough or didn't produce enough pressure to generate viable data on the microsecond timescale.

To reach the realm of simulation-worthy data, "you need hundreds of nanoseconds to a few microseconds worth of data-capture time," Gruebele said. With the previous methods, "we weren't close to the timeframe where you could perform computer simulations, right now or in the near future."

Ultimately, being able to feed experiment-generated data into a computer simulation will lead to better computer forecasts about how proteins fold, Gruebele said.

"By putting experiments and computer simulations together, we're going to be able to predict how proteins fold much more quickly and reliably," he said.

Gruebele, who is also a researcher at the Beckman Institute, believes that scientists will eventually be able to perform computer simulations of protein folding that are accurate enough predictors of folding so that "if you had a protein involved in a disease and its structure wasn't known, you could go to the computer and model how it behaves."

For example, when certain proteins in the brain mutate, that can lead to Alzheimer's disease, Gruebele said.

"The structures of proteins are ultimately what's responsible for their function," he said. "Changes to their structure often cause abnormal functions. That's why we want to understand protein structures, and be able to model how they change."

Gruebele said that computer simulations already yield a pretty accurate picture of a given small organic molecule. But with this new method that breaks the microsecond barrier, "we've just opened up a whole new world of proteins for study," he said.

"There are only a handful of proteins that we know about that would fold by temperature jumps or other methods in a couple of microseconds," Gruebele said. "But there are many proteins that do it in hundreds of microseconds, and that could be sped up to a few microseconds by pressure jumps."

Gruebele said that if you want to improve computer simulations of protein folding so that they're 99.9 percent reliable - so reliable that a medical doctor could trust the results - you need many test cases. And if you need lots of test cases, you need to be able to run computer simulations quickly, Gruebele said.

"This experiment enables a greater number of proteins to be tested by simulations and experiments simultaneously, which will push forward the agenda of getting computer simulations that are more reliable and faster," Gruebele said.

Note: This story has been adapted from a news release issued by the University of Illinois at Urbana-Champaign

Post Comments:

Search
New Articles
Polyester clothes stink after exercise; cotton, not so much

Live from inside a battery

Grooving crystal surfaces repel waterGrooving crystal surfaces repel water

Grant to improve lifetime performance of ceramic fuel cells

Computer simulations visualize ion fluxComputer simulations visualize ion flux

Single laser stops molecular tumbling motion instantly

Future solar panelsFuture solar panels

Hydrogen powers important nitrogen-transforming bacteriaHydrogen powers important nitrogen-transforming bacteria

Scientists pioneer strategy for creating new materials

Watching the structure of glass under pressureWatching the structure of glass under pressure

New filter technology -- uses inert gas to bore holes in high-quality steelNew filter technology -- uses inert gas to bore holes in high-quality steel

Getting graffiti off a masterpiece (video)Getting graffiti off a masterpiece (video)

Rubber meets the road with new ORNL carbon, battery technologiesRubber meets the road with new ORNL carbon, battery technologies

Experiments explain why some liquids are 'fragile' and others are 'strong'Experiments explain why some liquids are 'fragile' and others are 'strong'

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices



Archives
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007


Science Friends
Agricultural Science
Astronomy News
Sports Tech
Biology News
Biomimicry Science
Cognitive Research
Tissue Engineering
Cancer Research
Cybernetics Research
Electonics Research
Forensics Report
Fossil News
Genetic Archaeology
Genetics News
Geology News
Microbiology Research
Nanotech News
Parenting News
Physics News


  Archives |  Submit News |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2015 Web Doodle, LLC. All rights reserved.