Chemistry Times
Recent News |  Archives |  Tags |  About |  Newsletter |  Submit News |  Links |  Subscribe to ChemistryTimes.com RSS Feed Subscribe


More Articles
Rediscovering Venus to find faraway earthsRediscovering Venus to find faraway earths

Archaeologists discover bronze remains of Iron Age chariotArchaeologists discover bronze remains of Iron Age chariot

Researchers resolve the Karakoram glacier anomaly, a cold case of climate scienceResearchers resolve the Karakoram glacier anomaly, a cold case of climate science

Fish tale: New study evaluates antibiotic content in farm-raised fishFish tale: New study evaluates antibiotic content in farm-raised fish

New 3-D display technology promises greater energy efficiencyNew 3-D display technology promises greater energy efficiency

Researchers break nano barrier to engineer the first protein microfiberResearchers break nano barrier to engineer the first protein microfiber

Structure of an iron-transport protein revealedStructure of an iron-transport protein revealed

First step: From human cells to tissue-engineered esophagusFirst step: From human cells to tissue-engineered esophagus

Magnetic mirrors enable new technologies by reflecting light in uncanny waysMagnetic mirrors enable new technologies by reflecting light in uncanny ways

Lift weights, improve your memoryLift weights, improve your memory

Spiders: Survival of the fittest groupSpiders: Survival of the fittest group

Autophagy helps fast track stem cell activationAutophagy helps fast track stem cell activation

Myelin vital for learning new practical skillsMyelin vital for learning new practical skills

More physical activity improved school performanceMore physical activity improved school performance

Engineering new vehicle powertrainsEngineering new vehicle powertrains

Around the world in 400,000 years: The journey of the red foxAround the world in 400,000 years: The journey of the red fox

Active aging is much more than exerciseActive aging is much more than exercise

Study: New device can slow, reverse heart failureStudy: New device can slow, reverse heart failure

Are the world's religions ready for ET?Are the world's religions ready for ET?

Gut bacteria, artificial sweeteners and glucose intoleranceGut bacteria, artificial sweeteners and glucose intolerance

Recreating the stripe patterns found in animals by engineering synthetic gene networksRecreating the stripe patterns found in animals by engineering synthetic gene networks

Laying the groundwork for data-driven scienceLaying the groundwork for data-driven science

Hold on, tiger momHold on, tiger mom

Nature's designs inspire research into new light-based technologiesNature's designs inspire research into new light-based technologies

Missing piece found to help solve concussion puzzleMissing piece found to help solve concussion puzzle

Biologists delay the aging process by 'remote control'Biologists delay the aging process by 'remote control'

Geography matters: Model predicts how local 'shocks' influence U.S. economyGeography matters: Model predicts how local 'shocks' influence U.S. economy

Identified for the first time what kind of explosive has been used after the detonationIdentified for the first time what kind of explosive has been used after the detonation

Copied from nature: Detecting software errors via genetic algorithmsCopied from nature: Detecting software errors via genetic algorithms

Electrochemical step towards a better hydrogen storage (9/1/2013)

Tags:
alloys, cells, diffusion, electrolysis, elements, energy, fuel, fuel cells, hydrogen, ions, iron, magnesium alloys, materials, metals, palladium, research, temperature
New membrane with multilayer structure allows -- in combination with appropriate measurement techniques -- for electrochemical studies on hydrogen permeation rate in reactive metals, including magnesium. The picture shows Dr Arkadiusz Gajek from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. -  IPC PAS, Grzegorz Krzyżewski
New membrane with multilayer structure allows -- in combination with appropriate measurement techniques -- for electrochemical studies on hydrogen permeation rate in reactive metals, including magnesium. The picture shows Dr Arkadiusz Gajek from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. - IPC PAS, Grzegorz Krzyżewski

Good metal-based systems for hydrogen storage cannot be developed without knowing how this element permeates through metals. Researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw managed to apply a user-friendly electrochemical method to study hydrogen diffusion in highly reactive metals.

Hydrogen is seen as a versatile energy carrier for the future. Unfortunately, the element practically does not occur in the free state on Earth. Therefore, it must be first generated (e.g., by electrolysis of water), then stored, to be finally used -- ideally in fuel cells transforming chemical energy directly into electrical one. Hydrogen storage represents, however, a serious challenge. The drawbacks of conventional storage tanks for gaseous and liquid hydrogen force us to look for other solutions. One of the promising methods for hydrogen storage makes use of the capability of some metals and alloys to easily uptake this element. The development of efficient hydrogen storage systems requires, however, a detailed knowledge on how hydrogen diffuses in metals.

Hydrogen permeation through metals can be conveniently studied with electrochemical methods. These methods fail, however, for metals where the diffusion of hydrogen is relatively slow, and also in cases where metals strongly react with aqueous electrolyte solutions. The problem relates in particular to magnesium and magnesium alloys that are considered the most attractive materials for hydrogen storage. "We managed to overcome this obstacle", says Prof. Tadeusz Zakroczymski, whose team at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw has been for many years carrying out comprehensive research on hydrogen permeation, diffusion and uptake in metals.

The information on how hydrogen diffuses in metals is usually obtained from electrochemical measurements of the rate of hydrogen permeation through a sample being usually a membrane separating two independent electrolytic cells. On one side the membrane is charged with hydrogen produced cathodically in an aqueous solution. The electrochemical charging is simple and very efficient. "A relatively low cathode current density, in the range of miliamperes per square centimeter, can correspond to a pressure of gaseous hydrogen in the range of a few tens of thousands of atmospheres", explains Dr Arkadiusz Gajek (IPC PAS).

Hydrogen atoms enter the membrane, diffuse through it and subsequently leave the membrane on the other side. Here, due to appropriate conditions, they do not recombine but are immediately electrochemically oxidised to protons. This electrochemical detection of hydrogen is extremely sensitive. An easy-to-measure current density of one microampere per square centimeter corresponds a stream of about six trillion (6�10^12) single hydrogen atoms per second per square centimeter.

Prof. Zakroczymski's team constructed a membrane that allows to electrochemically insert hydrogen into highly reactive metals, and -- also electrochemically -- to detect it. The membrane has a multilayer structure. The main layer, a structural basis of the membrane, is made of iron. This metal was selected because hydrogen atoms move exceptionally fast in iron crystal lattice: their rate of diffusion at room temperature is comparable to that of hydrogen ions in aqueous solutions. Therefore, the iron layer has a relatively small effect on the hydrogen permeation rate through the entire membrane.

Both sides of the iron membrane are coated electrochemically with a thin palladium film. Then they are coated with magnesium and (for protection purposes) again with palladium using PVD methods. Both elements were deposited in cooperation with Prof. Wen-Ta Tsai's laboratory from National Cheng Kung University in Tainan, Taiwan.

"The measured rate of hydrogen permeation through a multilayer membrane depends on hydrogen diffusion in each membrane layer. Because hydrogen diffusion in iron and palladium is a well studied process, the diffusion coefficient of hydrogen in the magnesium layer can be deduced if we know the thickness of each layer", explains Prof. Zakroczymski.

Note: This story has been adapted from a news release issued by the Institute of Physical Chemistry of the Polish Academy of Sciences

Post Comments:

Search
New Articles
Active, biodegradable packaging for oily productsActive, biodegradable packaging for oily products

Novel 3D printing process enables metal additive manufacturing for consumer marketNovel 3D printing process enables metal additive manufacturing for consumer market

Can plants edge out petroleum as raw material for textiles and plastics?

ORNL thermomagnetic processing method provides path to new materialsORNL thermomagnetic processing method provides path to new materials

'Reverse engineering' materials for more efficient heating and cooling'Reverse engineering' materials for more efficient heating and cooling

Li-ion batteries contain toxic halogens, but environmentally friendly alternatives exist

Thermodiffusion in weightlessness

Watching the hidden life of materialsWatching the hidden life of materials

A GPS from the chemistry setA GPS from the chemistry set

Getting the salt out

Strengthening thin-film bonds with ultrafast data collectionStrengthening thin-film bonds with ultrafast data collection

Ph.D. designs new devices based on metamaterials

An effective, cost-saving way to detect natural gas pipeline leaks

Super stable garnet ceramics may be ideal for high-energy lithium batteriesSuper stable garnet ceramics may be ideal for high-energy lithium batteries

New insights on carbonic acid in waterNew insights on carbonic acid in water



Archives
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007


Science Friends
Agricultural Science
Astronomy News
Sports Tech
Biology News
Biomimicry Science
Cognitive Research
Tissue Engineering
Cancer Research
Cybernetics Research
Electonics Research
Forensics Report
Fossil News
Genetic Archaeology
Genetics News
Geology News
Microbiology Research
Nanotech News
Parenting News
Physics News


  Archives |  Submit News |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2015 Web Doodle, LLC. All rights reserved.