Chemistry Times
Recent News |  Archives |  Tags |  About |  Newsletter |  Submit News |  Links |  Subscribe to ChemistryTimes.com RSS Feed Subscribe


More Articles
Rapid and durable protection against ebola virus with new vaccine regimensRapid and durable protection against ebola virus with new vaccine regimens

Scientists prove ground and tree salamanders have same dietsScientists prove ground and tree salamanders have same diets

Smart headlights spare the eyes of oncoming driversSmart headlights spare the eyes of oncoming drivers

This star cluster is not what it seemsThis star cluster is not what it seems

Engineers advance understanding of graphene's friction propertiesEngineers advance understanding of graphene's friction properties

Blood-cleansing biospleen device developed for sepsis therapyBlood-cleansing biospleen device developed for sepsis therapy

Asian monsoon much older than previously thoughtAsian monsoon much older than previously thought

Childhood mentors have positive impact on career successChildhood mentors have positive impact on career success

'Solid' light could compute previously unsolvable problems'Solid' light could compute previously unsolvable problems

Discovery hints at why stress is more devastating for someDiscovery hints at why stress is more devastating for some

Enigmatic Viking fortress discovered in DenmarkEnigmatic Viking fortress discovered in Denmark

Evolutionary tools improve prospects for sustainable developmentEvolutionary tools improve prospects for sustainable development

The ozone hole has stabilized -- some questions remainThe ozone hole has stabilized -- some questions remain

Missing piece found to help solve concussion puzzleMissing piece found to help solve concussion puzzle

In directing stem cells, study shows context mattersIn directing stem cells, study shows context matters

Computer games give a boost to EnglishComputer games give a boost to English

Pesky insect inspires practical technologyPesky insect inspires practical technology

Mapping the DNA sequence of Ashkenazi JewsMapping the DNA sequence of Ashkenazi Jews

News media losing role as gatekeepers to new 'social mediators' on Twitter, study findsNews media losing role as gatekeepers to new 'social mediators' on Twitter, study finds

An 'anchor' that keeps proteins togetherAn 'anchor' that keeps proteins together

Biologists delay the aging process by 'remote control'Biologists delay the aging process by 'remote control'

Milk prices top concern of Northeastern organic dairy farmersMilk prices top concern of Northeastern organic dairy farmers

Cicada study discovers 2 genomes that function as 1Cicada study discovers 2 genomes that function as 1

Bombarded by explosive waves of information, scientists review new ways to process and analyze Big DataBombarded by explosive waves of information, scientists review new ways to process and analyze Big Data

Program earns kudos for improving grades, retaining studentsProgram earns kudos for improving grades, retaining students

Geography matters: Model predicts how local 'shocks' influence U.S. economyGeography matters: Model predicts how local 'shocks' influence U.S. economy

A healthy lifestyle adds years to lifeA healthy lifestyle adds years to life

Identified for the first time what kind of explosive has been used after the detonationIdentified for the first time what kind of explosive has been used after the detonation

Copied from nature: Detecting software errors via genetic algorithmsCopied from nature: Detecting software errors via genetic algorithms

Artificial forest for solar water-splitting (5/23/2013)

Tags:
solar cells, nanotech
This is a schematic of the nanoscale tree-like heterostructures used for solar-driven water splitting in which TiO2 nanowires (blue) are grown on the upper half of a Si nanowire (gray), and the two semiconductors absorb different regions of the solar spectrum. Insets display photoexcited electron-hole pairs separated at the semiconductor-electrolyte interface to carry out water splitting with the help of co-catalysts (yellow and gray dots). -  Image from Peidong Yang group/Berkeley Lab and UC Berkeley
This is a schematic of the nanoscale tree-like heterostructures used for solar-driven water splitting in which TiO2 nanowires (blue) are grown on the upper half of a Si nanowire (gray), and the two semiconductors absorb different regions of the solar spectrum. Insets display photoexcited electron-hole pairs separated at the semiconductor-electrolyte interface to carry out water splitting with the help of co-catalysts (yellow and gray dots). - Image from Peidong Yang group/Berkeley Lab and UC Berkeley

In the wake of the sobering news that atmospheric carbon dioxide is now at its highest level in at least three million years, an important advance in the race to develop carbon-neutral renewable energy sources has been achieved. Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have reported the first fully integrated nanosystem for artificial photosynthesis. While "artificial leaf" is the popular term for such a system, the key to this success was an "artificial forest."

"Similar to the chloroplasts in green plants that carry out photosynthesis, our artificial photosynthetic system is composed of two semiconductor light absorbers, an interfacial layer for charge transport, and spatially separated co-catalysts," says Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, who led this research. "To facilitate solar water- splitting in our system, we synthesized tree-like nanowire heterostructures, consisting of silicon trunks and titanium oxide branches. Visually, arrays of these nanostructures very much resemble an artificial forest."

Yang, who also holds appointments with the University of California Berkeley's Chemistry Department and Department of Materials Science and Engineering, is the corresponding author of a paper describing this research in the journal NANO Letters. The paper is titled "A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting." Co-authors are Chong Liu, Jinyao Tang, Hao Ming Chen and Bin Liu.

Solar technologies are the ideal solutions for carbon-neutral renewable energy - there's enough energy in one hour's worth of global sunlight to meet all human needs for a year. Artificial photosynthesis, in which solar energy is directly converted into chemical fuels, is regarded as one of the most promising of solar technologies. A major challenge for artificial photosynthesis is to produce hydrogen cheaply enough to compete with fossil fuels. Meeting this challenge requires an integrated system that can efficiently absorb sunlight and produce charge-carriers to drive separate water reduction and oxidation half-reactions.

"In natural photosynthesis the energy of absorbed sunlight produces energized charge-carriers that execute chemical reactions in separate regions of the chloroplast," Yang says. "We've integrated our nanowire nanoscale heterostructure into a functional system that mimics the integration in chloroplasts and provides a conceptual blueprint for better solar-to-fuel conversion efficiencies in the future."

When sunlight is absorbed by pigment molecules in a chloroplast, an energized electron is generated that moves from molecule to molecule through a transport chain until ultimately it drives the conversion of carbon dioxide into carbohydrate sugars. This electron transport chain is called a "Z-scheme" because the pattern of movement resembles the letter Z on its side. Yang and his colleagues also use a Z-scheme in their system only they deploy two Earth abundant and stable semiconductors - silicon and titanium oxide - loaded with co-catalysts and with an ohmic contact inserted between them. Silicon was used for the hydrogen-generating photocathode and titanium oxide for the oxygen-generating photoanode. The tree-like architecture was used to maximize the system's performance. Like trees in a real forest, the dense arrays of artificial nanowire trees suppress sunlight reflection and provide more surface area for fuel producing reactions.

"Upon illumination photo-excited electron−hole pairs are generated in silicon and titanium oxide, which absorb different regions of the solar spectrum," Yang says. "The photo-generated electrons in the silicon nanowires migrate to the surface and reduce protons to generate hydrogen while the photo-generated holes in the titanium oxide nanowires oxidize water to evolve oxygen molecules. The majority charge carriers from both semiconductors recombine at the ohmic contact, completing the relay of the Z-scheme, similar to that of natural photosynthesis."

Under simulated sunlight, this integrated nanowire-based artificial photosynthesis system achieved a 0.12-percent solar-to-fuel conversion efficiency. Although comparable to some natural photosynthetic conversion efficiencies, this rate will have to be substantially improved for commercial use. However, the modular design of this system allows for newly discovered individual components to be readily incorporated to improve its performance. For example, Yang notes that the photocurrent output from the system's silicon cathodes and titanium oxide anodes do not match, and that the lower photocurrent output from the anodes is limiting the system's overall performance.

"We have some good ideas to develop stable photoanodes with better performance than titanium oxide," Yang says. "We're confident that we will be able to replace titanium oxide anodes in the near future and push the energy conversion efficiency up into single digit percentages."

Note: This story has been adapted from a news release issued by the DOE/Lawrence Berkeley National Laboratory

Post Comments:

Search
New Articles
Titania-based material holds promise as new insulator for superconductorsTitania-based material holds promise as new insulator for superconductors

Simulations for better transparent oxide layersSimulations for better transparent oxide layers

Polyester clothes stink after exercise; cotton, not so much

Live from inside a battery

Grooving crystal surfaces repel waterGrooving crystal surfaces repel water

Grant to improve lifetime performance of ceramic fuel cells

Computer simulations visualize ion fluxComputer simulations visualize ion flux

Single laser stops molecular tumbling motion instantly

Future solar panelsFuture solar panels

Hydrogen powers important nitrogen-transforming bacteriaHydrogen powers important nitrogen-transforming bacteria

Scientists pioneer strategy for creating new materials

Watching the structure of glass under pressureWatching the structure of glass under pressure

New filter technology -- uses inert gas to bore holes in high-quality steelNew filter technology -- uses inert gas to bore holes in high-quality steel

Getting graffiti off a masterpiece (video)Getting graffiti off a masterpiece (video)

Rubber meets the road with new ORNL carbon, battery technologiesRubber meets the road with new ORNL carbon, battery technologies



Archives
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007


Science Friends
Agricultural Science
Astronomy News
Sports Tech
Biology News
Biomimicry Science
Cognitive Research
Tissue Engineering
Cancer Research
Cybernetics Research
Electonics Research
Forensics Report
Fossil News
Genetic Archaeology
Genetics News
Geology News
Microbiology Research
Nanotech News
Parenting News
Physics News


  Archives |  Submit News |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2015 Web Doodle, LLC. All rights reserved.