Chemistry Times
Recent News |  Archives |  Tags |  About |  Newsletter |  Submit News |  Links |  Subscribe to ChemistryTimes.com RSS Feed Subscribe


More Articles
Lunar pits could shelter astronauts, reveal details of how 'man in the moon' formedLunar pits could shelter astronauts, reveal details of how 'man in the moon' formed

Scientists complete chromosome-based draft of the wheat genomeScientists complete chromosome-based draft of the wheat genome

Study led by indigenous people uncovers grizzly bear 'highway'Study led by indigenous people uncovers grizzly bear 'highway'

Tiny laser sensor heightens bomb detection sensitivityTiny laser sensor heightens bomb detection sensitivity

A crystal wedding in the nanocosmosA crystal wedding in the nanocosmos

Has Antarctic sea ice expansion been overestimated?Has Antarctic sea ice expansion been overestimated?

Boosting the force of empty spaceBoosting the force of empty space

New research: When it hurts to think we were made for each otherNew research: When it hurts to think we were made for each other

Bacteria swim with whole body, not just propellersBacteria swim with whole body, not just propellers

Mixed genes mix up the migrations of hybrid birdsMixed genes mix up the migrations of hybrid birds

The economic territory of Upper Palaeolithic groups is specified by flintThe economic territory of Upper Palaeolithic groups is specified by flint

Wisconsin scientists find genetic recipe to turn stem cells to bloodWisconsin scientists find genetic recipe to turn stem cells to blood

PIWI proteins and piRNAs regulate genes in the germline and beyondPIWI proteins and piRNAs regulate genes in the germline and beyond

Law of physics governs airplane evolutionLaw of physics governs airplane evolution

Brain waves show learning to read does not end in 4th grade, contrary to popular theory

Running for life: How speed restricts evolutionary change of the vertebral columnRunning for life: How speed restricts evolutionary change of the vertebral column

Getting a grip on robotic graspGetting a grip on robotic grasp

The bend in the Appalachian mountain chain is finally explainedThe bend in the Appalachian mountain chain is finally explained

Cooperation among humans, a question of ageCooperation among humans, a question of age

Protein's 'hands' enable bacteria to establish infection, research findsProtein's 'hands' enable bacteria to establish infection, research finds

Less exercise, not more calories, responsible for expanding waistlinesLess exercise, not more calories, responsible for expanding waistlines

High earners in a stock market game have brain patterns that can predict market bubblesHigh earners in a stock market game have brain patterns that can predict market bubbles

Platonic solids generate their 4-dimensional analoguesPlatonic solids generate their 4-dimensional analogues

A healthy lifestyle adds years to lifeA healthy lifestyle adds years to life

Study of animal urination could lead to better-engineered productsStudy of animal urination could lead to better-engineered products

Do probiotics help kids with stomach bugs?Do probiotics help kids with stomach bugs?

Strict diet suspends development, doubles lifespan of wormsStrict diet suspends development, doubles lifespan of worms

Identified for the first time what kind of explosive has been used after the detonationIdentified for the first time what kind of explosive has been used after the detonation

Copied from nature: Detecting software errors via genetic algorithmsCopied from nature: Detecting software errors via genetic algorithms

Artificial forest for solar water-splitting (5/23/2013)

Tags:
solar cells, nanotech
This is a schematic of the nanoscale tree-like heterostructures used for solar-driven water splitting in which TiO2 nanowires (blue) are grown on the upper half of a Si nanowire (gray), and the two semiconductors absorb different regions of the solar spectrum. Insets display photoexcited electron-hole pairs separated at the semiconductor-electrolyte interface to carry out water splitting with the help of co-catalysts (yellow and gray dots). -  Image from Peidong Yang group/Berkeley Lab and UC Berkeley
This is a schematic of the nanoscale tree-like heterostructures used for solar-driven water splitting in which TiO2 nanowires (blue) are grown on the upper half of a Si nanowire (gray), and the two semiconductors absorb different regions of the solar spectrum. Insets display photoexcited electron-hole pairs separated at the semiconductor-electrolyte interface to carry out water splitting with the help of co-catalysts (yellow and gray dots). - Image from Peidong Yang group/Berkeley Lab and UC Berkeley

In the wake of the sobering news that atmospheric carbon dioxide is now at its highest level in at least three million years, an important advance in the race to develop carbon-neutral renewable energy sources has been achieved. Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have reported the first fully integrated nanosystem for artificial photosynthesis. While "artificial leaf" is the popular term for such a system, the key to this success was an "artificial forest."

"Similar to the chloroplasts in green plants that carry out photosynthesis, our artificial photosynthetic system is composed of two semiconductor light absorbers, an interfacial layer for charge transport, and spatially separated co-catalysts," says Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, who led this research. "To facilitate solar water- splitting in our system, we synthesized tree-like nanowire heterostructures, consisting of silicon trunks and titanium oxide branches. Visually, arrays of these nanostructures very much resemble an artificial forest."

Yang, who also holds appointments with the University of California Berkeley's Chemistry Department and Department of Materials Science and Engineering, is the corresponding author of a paper describing this research in the journal NANO Letters. The paper is titled "A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting." Co-authors are Chong Liu, Jinyao Tang, Hao Ming Chen and Bin Liu.

Solar technologies are the ideal solutions for carbon-neutral renewable energy - there's enough energy in one hour's worth of global sunlight to meet all human needs for a year. Artificial photosynthesis, in which solar energy is directly converted into chemical fuels, is regarded as one of the most promising of solar technologies. A major challenge for artificial photosynthesis is to produce hydrogen cheaply enough to compete with fossil fuels. Meeting this challenge requires an integrated system that can efficiently absorb sunlight and produce charge-carriers to drive separate water reduction and oxidation half-reactions.

"In natural photosynthesis the energy of absorbed sunlight produces energized charge-carriers that execute chemical reactions in separate regions of the chloroplast," Yang says. "We've integrated our nanowire nanoscale heterostructure into a functional system that mimics the integration in chloroplasts and provides a conceptual blueprint for better solar-to-fuel conversion efficiencies in the future."

When sunlight is absorbed by pigment molecules in a chloroplast, an energized electron is generated that moves from molecule to molecule through a transport chain until ultimately it drives the conversion of carbon dioxide into carbohydrate sugars. This electron transport chain is called a "Z-scheme" because the pattern of movement resembles the letter Z on its side. Yang and his colleagues also use a Z-scheme in their system only they deploy two Earth abundant and stable semiconductors - silicon and titanium oxide - loaded with co-catalysts and with an ohmic contact inserted between them. Silicon was used for the hydrogen-generating photocathode and titanium oxide for the oxygen-generating photoanode. The tree-like architecture was used to maximize the system's performance. Like trees in a real forest, the dense arrays of artificial nanowire trees suppress sunlight reflection and provide more surface area for fuel producing reactions.

"Upon illumination photo-excited electron−hole pairs are generated in silicon and titanium oxide, which absorb different regions of the solar spectrum," Yang says. "The photo-generated electrons in the silicon nanowires migrate to the surface and reduce protons to generate hydrogen while the photo-generated holes in the titanium oxide nanowires oxidize water to evolve oxygen molecules. The majority charge carriers from both semiconductors recombine at the ohmic contact, completing the relay of the Z-scheme, similar to that of natural photosynthesis."

Under simulated sunlight, this integrated nanowire-based artificial photosynthesis system achieved a 0.12-percent solar-to-fuel conversion efficiency. Although comparable to some natural photosynthetic conversion efficiencies, this rate will have to be substantially improved for commercial use. However, the modular design of this system allows for newly discovered individual components to be readily incorporated to improve its performance. For example, Yang notes that the photocurrent output from the system's silicon cathodes and titanium oxide anodes do not match, and that the lower photocurrent output from the anodes is limiting the system's overall performance.

"We have some good ideas to develop stable photoanodes with better performance than titanium oxide," Yang says. "We're confident that we will be able to replace titanium oxide anodes in the near future and push the energy conversion efficiency up into single digit percentages."

Note: This story has been adapted from a news release issued by the DOE/Lawrence Berkeley National Laboratory

Post Comments:

Search
New Articles
Fill 'er up: Research develops prototype meter test for hydrogen refueling stationsFill 'er up: Research develops prototype meter test for hydrogen refueling stations

Enhanced instrument enables high-speed chemical imaging of tissuesEnhanced instrument enables high-speed chemical imaging of tissues

Directly visualizing hydrogen bondsDirectly visualizing hydrogen bonds

Technique simplifies the creation of high-tech crystalsTechnique simplifies the creation of high-tech crystals

Fundamental chemistry findings could help extend Moore's LawFundamental chemistry findings could help extend Moore's Law

Self-cooling solar cells boost power, last longerSelf-cooling solar cells boost power, last longer

An anti-glare, anti-reflective display for mobile devices?

Uncertainty gives scientists new confidence in search for novel materials

Neutron crystallography solves long-standing biological mysteryNeutron crystallography solves long-standing biological mystery

A first direct glimpse of photosynthesis in action

Ferromagnetism at 230 K found in a new diluted magnetic semiconductor by Chinese physicists

Postcards from the photosynthetic edgePostcards from the photosynthetic edge

Chemists develop novel catalyst with 2 functions

Researchers figure out how to make more efficient fuel cellsResearchers figure out how to make more efficient fuel cells

Researchers: Consider the 'anticrystal'Researchers: Consider the 'anticrystal'



Archives
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007


Science Friends
Agricultural Science
Astronomy News
Sports Tech
Biology News
Biomimicry Science
Cognitive Research
Tissue Engineering
Cancer Research
Cybernetics Research
Electonics Research
Forensics Report
Fossil News
Genetic Archaeology
Genetics News
Geology News
Microbiology Research
Nanotech News
Parenting News
Physics News


  Archives |  Submit News |  Advertise With Us |  Contact Us |  Links
Use of this site constitutes acceptance of our Terms of Service and Privacy Policy. All contents © 2000 - 2015 Web Doodle, LLC. All rights reserved.